Phonological Complexity is Subregular:
Evidence from Sign Language

Jonathan Rawski

Department of Linguistics
Stony Brook University
Jonathan.rawski@stonybrook.edu

May 26, 2017
Today’s Question

Do the computational properties of phonology hold across modalities?

Two Major Camps

▶ "Continuity View": phonology depends on/emerges from the properties of the phonetic system (grounded)
 ▶ Markedness, Feature geometries, Inductive Learning

▶ "Algebraic View": Abstract computational system that gets to peek at the phonetics, but is largely independent
 ▶ Neurological Evidence, Acquisition Evidence, Extensive theoretical commonalities
Today’s Question

Do the computational properties of phonology hold across modalities?

Two Major Camps

▶ "Continuity View": phonology depends on/emerges from the properties of the phonetic system (grounded)
 ▶ Markedness, Feature geometries, Inductive Learning

▶ "Algebraic View": Abstract computational system that gets to peek at the phonetics, but is largely independent
 ▶ Neurological Evidence, Acquisition Evidence, Extensive theoretical commonalities
Today’s Question

Do the computational properties of phonology hold across modalities?

Two Major Camps

- "Continuity View": phonology depends on/emerges from the properties of the phonetic system (grounded)
 - Markedness, Feature geometries, Inductive Learning

- "Algebraic View": Abstract computational system that gets to peek at the phonetics, but is largely independent
 - Neurological Evidence, Acquisition Evidence, Extensive theoretical commonalities
This has not been fruitful

- work has focused on the feature representations
- a lot of theoretical work is based on loose analogies to spoken language
 Handshape is "like" tone... etc.
- Representational issues still abound
 Senquentiality vs Simultaneity
 SLM 2006, Ch.14: "Is there a Syllable in Sign language"

A New Direction

- Adopt a Formal Language Theory Perspective
- Analyze the complexity of signed vs spoken patterns
- Compare them to limits on phonological complexity (Heinz 2016)
This has not been fruitful

- work has focused on the feature representations
- a lot of theoretical work is based on loose analogies to spoken language
 Handshape is "like" tone... etc.
- Representational issues still abound
 Senquentiality vs Simultaneity
 SLM 2006, Ch.14: "Is there a Syllable in Sign language"

A New Direction

- Adopt a Formal Language Theory Perspective
- Analyze the complexity of signed vs spoken patterns
- Compare them to limits on phonological complexity (Heinz 2016)
Outline

1. Overview
2. Complexity
3. Strictly Local Functions
4. Sign Language Locality
5. Conclusion
The Structure of Signed Syllables
The Subregular Hypothesis

Phonology is **Subregular**: it fits best into the sub-classes of the regular languages.

This case is being pursued by

Jeff Heinz Jane Chandlee Adam Jardine Thomas Graf

... and others
Phonological Mappings are Subregular

McNaughton & Papert 1971; Rogers & Pullum 2011; Rogers et al. 2012; Heinz 2016; Mohri 1997; Chandlee 2014
Input Strictly Local Mappings

Strictly Local (SL; Chandlee 2014)

- define a window of segments of length k to map from input to output
 - $k = 2$
 - ‘np’ → ‘mp’
- Move through string from left to right.
- Rewrite segment x as y based on previous n symbols in input string
- Mapping never considers both input and output.
Example: Word-Final Devoicing

SL$_{2}$-Mapping: -son \rightarrow -voice / _\times

Input String: TOD

ISL Output

\times T O D \times
Example: Word-Final Devoicing

SL$_2$-Mapping: -son \rightarrow -voice / _\x

Input String: TOD

ISL Output

\times T O D \times

\times
Example: Word-Final Devoicing

SL$_2$-Mapping: -son \rightarrow -voice / _\times

Input String: TOD

ISL Output

\times T O D \times

\times T
Example: Word-Final Devoicing

\textbf{SL}_2\text{-Mapping}: \text{-son} \rightarrow \text{-voice} / _\chi_ \\
\text{Input String: TOD} \\
\text{ISL Output} \\
\times T O D \times \\
\times T
Example: Word-Final Devoicing

SL$_2$-Mapping: -son \rightarrow -voice / _\neq

Input String: TOD

ISL Output

\times T O D \times

\times T O
Example: Word-Final Devoicing

SL$_2$-Mapping: -son \rightarrow -voice / $_\times$

Input String: TOD

ISL Output

\times T O D \times

\times T O
Example: Word-Final Devoicing

\textbf{SL}^{2}\textbf{-Mapping}: \text{-son} \rightarrow \text{-voice} / _\times_

\textbf{Input String:} TOD

\textbf{ISL Output}

\begin{itemize}
 \item \times \quad T \quad O \quad D \quad \times
 \item \times \quad T \quad O
\end{itemize}
Example: Word-Final Devoicing

SL$_2$-Mapping: -son \rightarrow -voice / _\x

Input String: TOD

ISL Output

\[
\begin{array}{cccc}
\times & T & O & D & \times \\
\times & T & O & T & \\
\end{array}
\]
Strictly Local To Sign Language

What Kind of Processes are Strictly Local?

- Substitution
- Deletion
- Epenthesison
- ‘Bounded’ Metathesis

Strictly Local Processes in Sign Language

- Non-Local Metathesis
- Partial Reduplication
- Compound reduction/Blending
Strictly Local To Sign Language

What Kind of Processes are Strictly Local?

- Substitution
- Deletion
- Epenthesis
- ‘Bounded’ Metathesis

Strictly Local Processes in Sign Language

- Non-Local Metathesis
- Partial Reduplication
- Compound reduction/Blending
Chandlee 2014: Spoken Metathesis and Reduplication are Strictly Local processes

Partial reduplication

<table>
<thead>
<tr>
<th>Marshallese</th>
<th>English</th>
<th>Marshallese</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>ebbok</td>
<td>'to make full'</td>
<td>ebbok-bok</td>
<td>'puffy'</td>
</tr>
<tr>
<td>ebbok-bok</td>
<td>'puffy'</td>
<td>susulat</td>
<td>'will write'</td>
</tr>
</tbody>
</table>

Non-Local Metathesis

- Metathesis = Delete x Copy
- 'Long Distance Metathesis'
 - Cuzco Quechua (Davidson 1977)
 - yuraq → ruyaq, 'white'
 - aBc → cBa
ASL Final Syllable Reduplication

FAINT (ASL)

OVERSLEEP

(ASL)

\[\sigma \\
L \quad M \quad L \\
a \quad b \quad \\
\text{the compound} \\
\]

\[\sigma \\
L \quad M \quad L \\
a \quad b \quad \\
\text{the reduplicant} \\
\]

\[\sigma_1 \\
L \quad M \quad L \\
a \quad b \quad c \\
\text{the compound} \\
\]

\[\sigma_2 \\
L \quad M \quad L \\
b \quad c \quad \\
\text{the reduplicant} \\
\]

\[\sigma_1 \\
L \quad M \quad L \\
a \quad b \quad (M) \\
\]

\[\sigma_2 \\
L \quad L \\
b \quad c \quad c \\
\]
ASL Final Syllable Reduplication

\(\sigma_1 \quad \sigma_2 \quad \sigma_2 \)

- \(L \quad M \quad L \quad M \quad L \)
- \(a \quad b \quad c \)
- the compound

- \(L \quad M \quad L \)
- \(b \quad c \)
- the reduplicant

Window Length: 4 segments
ISL\(_4\) Mapping: \(\emptyset \rightarrow \text{LML / LML\text{--\;\;}\text{x}} \)
Input String: LMLML

\(\times \quad L \quad M \quad L \quad M \quad L \quad \text{x} \)
ASL Final Syllable Reduplication

Window Length: 4 segments
ISL\textsubscript{4} Mapping: $\emptyset \rightarrow \text{LML} / \text{LML} __ ___ \times$
Input String: LMLMLML

× L M L M L ×
ASL Final Syllable Reduplication

Window Length: 4 segments

ISL₄ Mapping: $\emptyset \rightarrow \text{LML / LML}_\text{-}^\text{×}$

Input String: LMLML

\boxtimes L M L M L \boxtimes

L
ASL Final Syllable Reduplication

Window Length: 4 segments
ISL₄ Mapping: ∅ → LML / LML⁻⁻×
Input String: LMLML

× L M L M L ×
L
ASL Final Syllable Reduplication

Window Length: 4 segments

ISL₄ Mapping: $\emptyset \rightarrow \text{LML / LML}$

Input String: LMLML

\otimes L M L M L
L M
ASL Final Syllable Reduplication

Window Length: 4 segments
ISL₄ Mapping: $\emptyset \rightarrow \text{LML / LML}_______\times$
Input String: LMLML

\times L M L M L \times
L M
ASL Final Syllable Reduplication

Window Length: 4 segments
ISL$_4$ Mapping: $\emptyset \rightarrow \text{LML / LML}_{--\times}$
Input String: LMLML

\[
\begin{array}{c}
\sigma_1 \\
L \quad M \quad L \\
a \\
\sigma_2 \\
L \quad M \quad L \\
b \\
\sigma_2 \\
L \quad M \quad L \\
c \\
\end{array}
\]

the compound
the reduplicant
ASL Final Syllable Reduplication

Window Length: 4 segments
ISL₄ Mapping: $\emptyset \rightarrow \text{LML / LML}_-$
Input String: LMLML

\[
\begin{array}{c}
\sigma_1 \\
L & M & L \\
a & b & c \\
\text{the compound}
\end{array}
\quad \begin{array}{c}
\sigma_2 \\
L & M & L \\
b & c \\
\text{the reduplicant}
\end{array}
\]

\otimes L M L M L \otimes
L M L M
ASL Final Syllable Reduplication

Window Length: 4 segments
ISL₄ Mapping: ∅ → LML / LML
Input String: LMLML

× L M L M L
L M L M
ASL Final Syllable Reduplication

Window Length: 4 segments

ISL$_4$ Mapping: $\emptyset \rightarrow \text{LML / LML}$

Input String: LMLML

\times L M L M L LML
Metathesis and Reduplication

Chandlee 2014: Spoken Metathesis and Reduplication are Strictly Local processes

Partial reduplication

<table>
<thead>
<tr>
<th>Marshallese</th>
<th>Tagalog</th>
</tr>
</thead>
<tbody>
<tr>
<td>ebbok 'to make full'</td>
<td>sulat 'write'</td>
</tr>
<tr>
<td>ebbok-bok 'puffy'</td>
<td>susulat 'will write'</td>
</tr>
</tbody>
</table>

Non-Local Metathesis

- Metathesis \equiv Delete \times Copy
- 'Long Distance Metathesis'
 - Cuzco Quechua (Davidson 1977)
 - yuraq \rightarrow ruyaq, 'white'
 - aBc \rightarrow cBa
Metathesis

a. FATHER DEAF (ASL)
b. MOTHER DEAF (ASL)
Metathesis

ISL4 Mapping: \[aBc \rightarrow cBa \]

Window: 4 segments

Input String: \[L_1ML_2L_3ML_2 \]
Metathesis

ISL4 Mapping: $aBc \rightarrow cBa$
Window: 4 segments
Input String: $L_1ML_2L_3ML_2$

$\times \quad L_1 \quad M \quad L_2 \quad L_3 \quad M \quad L_2 \quad \times$
Metathesis

ISL4 Mapping: \[\text{aBc} \rightarrow \text{cBa} \]

Window: 4 segments

Input String: \(L_1 ML_2 L_3 ML_2 \)

\[\times \quad L_1 \quad M \quad L_2 \quad L_3 \quad M \quad L_2 \quad \times \]

\[\times \quad L_1 \]

\(L_1 \)
Metathesis

ISL4 Mapping: \(\text{aBc} \rightarrow \text{cBa} \)

Window: 4 segments

Input String: \(L_1ML_2L_3ML_2 \)

\[\times \]

\[L_1 \quad M \quad L_2 \quad L_3 \quad M \quad L_2 \quad \times \]

\[L_1 \quad M \quad L_1 \quad M \]
Metathesis

ISL4 Mapping:
Window:
Input String:

ɑbC → cBa
4 segments
$L_1ML_2L_3ML_2$

$\times L_1 M L_2 L_3 M L_2 \times$
Metathesis

ISL4 Mapping: $aBc \rightarrow cBa$
Window: 4 segments
Input String: $L_1ML_2L_3ML_2$

$\times \quad L_1 \quad M \quad L_2 \quad L_3 \quad M \quad L_2 \quad \times$

$\times \quad L_1 \quad M \quad L_2$

$\times \quad L_1 \quad M$
Metathesis

ISL4 Mapping: \(aBc \rightarrow cBa \)

Window: 4 segments

Input String: \(L_1ML_2L_3ML_2 \)

\(\times L_1 M L_2 L_3 M L_2 \times \)
\(\times L_1 M L_2 \)
Metathesis

ISL4 Mapping: \textbf{aBc} \rightarrow \textbf{cBa}

Window: 4 segments

Input String: \textbf{L}_1\textbf{ML}_2\textbf{L}_3\textbf{ML}_2

\[
\begin{array}{cccc}
\otimes & L_1 & M & L_2 \\
L_1 & M & L_2 & L_3 \\
& L_2 & M & L_3
\end{array}
\]
Compound Reduction

a. MIND

b. DROP

c. FAINT (ASL)
Compound Reduction

a. MIND

b. STOP (suspend)

c. MIND^STOP = DAYDREAM
Compound Reduction

a. THINK

b. MARRY

c. BELIEVE
Compound Reduction

a. THINK

b. MARRY

c. BELIEVE

L1 [prox] M L2 [contact] L3 [medial] M L4 [contact] → L2 M L4 [contact] [head] [non-dominant hand] [head] [hand]
Compound Reduction

Window Size: 4

ISL4 Mapping: $\times L_1^1 M_1^1 L_2^1 L_3^2 M_2^2 L_4^2 \times L_2^2 M_2^2 L_4^2 \times$
Conclusion

Today’s Results

- Strict Locality Across Modalities for:
 - Bounded Metathesis
 - Partial Reduplication
 - Compound Reduction

- The Subregular Hypothesis seems to hold regardless of the phonetic system

- Some phonological processes are "algebraic", and some part of phonology is independent
Conclusion

Predictions

- Any (morpho)phonological process/structure in sign should have the same subregular complexity class as its spoken counterpart
- If not, or any part of Sign phonology is more than subregular, then either:
 - the subregular hierarchy is not expressive enough
 - the signed modality imposes a different complexity than the oral modality
 - the “algebraic” view is wrong
Conclusion

Future Directions

- Suprasegmental vs segmental dichotomy (Jardine 2015)
- Handshape Configuration
 - Eccarius OT Dissertation
- Typological similarities
- Why stop at phonology?

The aim is to see *complete nature* as different aspects of *one set* of phenomena.

- Richard Feynman, *Six Easy Pieces*
Conclusion

Future Directions

- Suprasegmental vs segmental dichotomy (Jardine 2015)
- Handshape Configuration
 - Eccarius OT Dissertation
- Typological similarities
- Why stop at phonology?

The aim is to see *complete nature* as different aspects of *one set* of phenomena.
- Richard Feynman, *Six Easy Pieces*
The Structure of Signed Syllables

Diagram:
- **HC** (Head Contact)
- **L** (Left)
- **M**
- **R** (Right)

- **[head]**
- **[contact]**
- **[+ipsi]**
- **[+proximal]**

Image:
- **IDEA (ASL)**