How the Constraint Space Structure Enables Learning

Jane Chandlee, Rémi Eyraud, Jeffrey Heinz, Adam Jardine, Jonathan Rawski
Haverford College, Aix-Marseille Université, Stony Brook University, Rutgers University

Overview

How is the hypothesis space of a phonological learner structured, and how does the learner use this structure to generalize from examples? Recent work on model-theoretic phonology shows that particular phonological representations and relations play a large role in learning properties of well-formed structures. Here we:

- Extend current model-theoretic accounts of phonology to unconventional string models incorporating fratalional information;
- Show how features structure the hypothesis space into ideals and filters;
- Describe a non-statistical, non-enumerative learning algorithm that provably learns the most general constraints over features consistent with the data;
- Its efficiency and integration with statistical models is focus of current research.

Model-Theoretic Phonological Representations

A model theory for words defines a class of relational structures. Here we:

1. How is the hypothesis space of a phonological learner structured, and how does the learner use this structure to generalize from examples?
2. Recent work on model-theoretic phonology shows that particular phonological representations and relations play a large role in learning properties of well-formed structures.

Feature Ideals and Grammatical Entailments

Let \(S \) and \(T \) be segments represented as bundles of n-ary features. Then \(T \) is an feature extension of \(S \) for grammar \(G \) (\(S \sqsubset T \)) iff \(T \) is the result of inserting one or more n-ary features of \(G \) in \(S \).

Feature Ideals: If \(T \) is a feature extension of \(S \) for \(G \) and \(G \) generates \(T \), then \(G \) generates \(S \).

Feature Filters: If \(T \) is a feature extension of \(S \) for \(G \) and \(G \) forbids \(S \), then \(G \) forbids \(T \).

Organizing the hypothesis space into sets of ideals and principal filters allows the learner to exploit these grammatical entailments they provide.

Example: Banning Singular Segments

Suppose the learning data consists of:

- \([N,N,V,C]\) (voiced nasal consonants),
- \([N,N,-V,C]\) (voiced nonnal consonants),
- \([-N,N,V,C]\) (voiceless nonnal consonants),
- \([-N,N,-V,C]\) (voiceless vowel consonants).

What constraints ought to be posited?

Positing \([-N,N,V]\) (voiceless nasals), \([-N,N,C]\) (nasal vowels), and \([-N,V,C]\) (voiceless vowels) accounts for the absence of the four unobserved feature combinations with fewer constraints.

Example: Aari Long distance sibilant harmony

In Aari, all sibilants agree in anteriority.

- 1) ha’er ‘he brought’
- 2) ga’er ‘I arrived’
- \(G = \{ [\{'p\}', \{'v\}', \{'s\}'] \} \)

Summary of Learning Guarantees

Given a finite positive data sample, the bottom-up learner finds a constraint grammar \(G \) such that:

1. The largest forbidden substructure is of size \(k \).
2. \(G \) is consistent, i.e. it covers the data:
- \(D \subseteq L(G) \)
3. \(L(G) \) is the smallest language in \(L \) which covers the data:
- For all \(L \in L \) where \(D \subseteq L \), \(L(G) \subseteq L \).
4. \(G \) includes structures \(S \) that are restrictions of structures \(S' \) included in other grammars \(G' \) that also satisfy (1,2,3).
- For all \(S' \subseteq G' \), there exists \(S \in G \) such that \(S \subseteq S' \).

Statistics and Structure

- Structured Hypothesis Spaces allow for correct generalization.
- Hayes and Wilson are right to have a generality relation in their MaxEnt Learner, but why not use the ordering it gives?
- What is the efficiency tradeoff between statistics and structure?
- Is there a constraint learner which can allow this structure?

References